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Wroctaw, Poland 

Received 25 November 1987 

Abstract. The results of numerical simulations of diffusion-limited aggregation on the torus 
are presented. The usual random walk was generalised by allowing the particle to perform 
jumps of length equal to s lattice spacings, s 3 1. Patterns with periodic structure were 
obtained. 

Recently there has been an increasing interest in the study of irreversible kinetic 
processes leading to the formation of fractal patterns. A simple stochastic model for 
the formation of clusters of particles in two-dimensional space was proposed by Witten 
and Sander (1981, 1983). In their model, called diffusion-limited aggregation (DLA),  
a single particle walks randomly on the square lattice until it reaches another particle 
(‘seed’), located usually in the centre of the lattice. Next, a new particle initiates its 
random walk. If the particle contacts the cluster (now built of two particles) it is 
incorporated into the cluster and the cluster grows. This process is repeated many 
times and leads to ramified structures possessing remarkable scaling properties (see 
figure 1, where a cluster of 3000 particles is shown). For example, the number N of 

Figure 1. Typical aggregate obtained from 3000 particles by means of usual DLA on the torus. 
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particles contained inside the circle of radius R grows as 

N ( R )  - R D  (1) 
where D = 1.7 is the fractal dimension (Mandelbrot 1982). It is believed that the value 
1.7 for D is universal, i.e. it does not depend on the lattice, which was confirmed for 
the triangular lattice by Witten and Sander (1981, 1983) and for the non-lattice case 
by Meakin (1983a). 

Some modifications and different techniques for computer simulations have been 
discussed (for reviews see Sander (1985), Stanley and Ostrovsky (1986) and Herrmann 
(1986)). Variants of the original DLA include the introduction of the probability 
distribution for the sticking of particles (Meakin 1983a), superimposition of the drift 
on the diffusion (Meakin 1983b), using so-called Levy flight instead of the usual 
diffusion (Meakin 1984), modification of the sticking rule (Kertksz and Vicsek 1986), 
and so on. Also, electric breakdowns in dielectrics lead to fractal structures for the 
discharge patterns (Niemeyer et a1 1984). Some different algorithms for computer 
simulations have also been used (see, e.g., Meakin (1983a) and Ball and Brady (1985)). 
The aim of these modifications was the reduction of the duration of computer simula- 
tions. For example, in Meakin’s (1983a) simulations a particle was killed if it went 
sufficiently far away from the cluster and the new particle started on the circle 
surrounding the aggregate. To our knowledge, there is still no satisfactory theory of 
DLA (see, however, Gould et a1 (1983), Muthukumar (1983) and Halsey er a1 (1986)). 

In this letter we shall present preliminary results of the computer simulation of 
DLA on the torus. The recipe for the formation of aggregates was the following. Let 
us imagine the square lattice with L sites along one edge. One of the edges was chosen 
with probability a and on it the starting point for the random walk was chosen with 
probability 1/L. We generalised the usual random walk by allowing the particle to 
perform jumps of length equal to s lattice spacings, s 2 1, with probability a in one of 
four directions: up, down, left and right. We imposed on the random walk the periodic 
boundary condition that a particle crossing one of the edges appears on the opposite 
side (so the number of bonds between sites is also equal to L ) .  In other words, the 
particle performs a random walk on the torus. As we took the number L to be prime 
(see below) it was possible to locate the seed in the centre of the square. The sticking 
rule was the usual one, i.e. the particle was incorporated into the aggregate on the first 
contact with it, providing that one particle only can occupy each site. (For s = 1, i.e. 
for usual DLA, it is impossible that the walker will fall into the site already occupied.) 
We should add that we allowed the particle to walk on the sites already occupied, i.e. 
on the aggregate. 

For the termination of the aggregation process, the trajectory of each particle should 
reach the cluster. In  other words, the trajectory should fill out the whole torus. It  is 
obvious that for usual diffusion with s = 1 each site can be reached by the walker. But 
in a case of the random walk with length of step s >  1, the trajectory will fill out the 
torus only when L and s are mutually prime, i.e. when the greatest common divisor 
(GCD) of L and .s is equal to 1. It  is common to denote the GCD of two natural numbers 
a and b by (a, b ) ,  so for the ‘ergodicity’ of the random walk the following condition 
should be satisfied: 

( L ,  s) = 1. (2) 
The above condition can be justified in the following way. Using the following identity: 

( A  mod C +  B )  mod C = ( A + B )  mod C 
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the x coordinate, for example, of the particle after some number of jumps can be 
written as 

x = (xo+ k s )  mod L = xo+ ks - L[(xo+  k s ) /  L ]  k E Z 

where [ r ]  denotes the integer part of the number r and xo is a starting point. Denoting 
q = [(xo+ ks ) /  L ]  and shifting x - xo+ x we can write 

x = ks - Lq. 

The trajectory of the random walk will fill out the torus if and only if the above 
equation has integer solutions k and q for each x. From the theory of Diophantine 
equations (e.g. Courant and Robbins 1961) it is known that the equation 

ax + by = c 

has integer solutions for x and y if and only if c is a multiple of (a ,  b ) .  The only way 
to filfil the requirement that each x should be a multiple of ( L ,  s )  is the condition 
(2). The easiest and most convenient way to conform to (2) is to take L prime. In a 
case when ( L ,  s)  # 1 the particle will be moving on the sublattice with period ( L ,  s )  
because only coordinates divisible by ( L ,  s) can be visited by a walker. 

Due to our modest computer abilities we were able to make aggregates of up to 
6000 particles on a lattice of 173 x 173 sites, so the ratio of filled pixels to all pixels 
was equal to 0.2005..  , . We used the following random number generator: 

Z , , ,  = AZ, mod C A = 1203 248 318, c = 2 3 ’  - 1 

which is claimed to possess weak correlations (Fishman and Moore 1982). Figure 2 
presents aggregates obtained by numerical simulations with different lengths of step. 
This figure shows that typical shapes of three kinds are produced for s > 1 .  (Figure 1 
was made using the same program but for s = 1 to check the correctness of it.) In  all 
cases periodic structures in the outer regions (resembling crystals) were obtained. We 
see that for small steps (see figure 2(a)  for s = 3) the aggregates have peninsulas and 
gulfs, but for larger steps of random walk more regular objects are formed. We found 
that the fractal dimension measured via equation ( 1 )  is not a good characterisation of 
aggregates obtained for s > 1 because the slope of the log N against log R plot is not 
a constant but either decreases slowly with R (for small s )  or oscillates with period 
equal to the period of the ‘crystallic’ lattice produced (for larger s, such as s = 29, 
figure 2(d)) .  Nevertheless, it should be mentioned that the slope of the log N against 
log R plot varies between 1.8 and 1.5.  It seems that there is another quantity needed 
to distinguish qualitatively the patterns in figures 1 and 2. It could be expected that 
for s >  1 the particles would be able to penetrate deeper into the aggregate than for 
usual DLA, but this is not so, as can be seen from figure 3 where the last 3000 particles 
are plotted. We would like also to mention that the patterns shown in figures 2(a)-(c) 
visually resemble the ones obtained in another way by Sawada et al (1982) (see figure 
2 in their paper) and it seems that there should be a connection between their control 
parameter called the tip priority factor and our length of steps. Let us add that these 
authors found it necessary to introduce two fractal dimensions to characterise their 
patterns, because the slope of the plot of log N against log R was not constant for 
all R. 

Finally let us add a few ‘phenomenological’ remarks. First of all, it should be 
stressed that the characteristic quasiperiodic patterns of aggregates are intimately 
connected with the fact that all particles started from the same boundary. For example, 
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Figure 2. Typical aggregates obtained by means of DLA on the torus with length of step 
s = ( a )  3, ( b )  5, (c )  19 and ( d )  29. The step is drawn in the upper left-hand corner of 
each figure. The number of particles is equal to 6000 in each case. 

when for s = 19 we chose the starting points from the four strips of width equal to s, 
we did not obtain the strange object seen in figure 2 ( c )  but the circle densely filled 
with particles. Secondly, for the random walk with s > 1 the sites lying on the straight 
lines x, y =  ks, k E Z ,  are visited earlier by the walker than other ones. This fact 
explains the quasiperiodicity of the aggregates. We are now trying to formalise these 
observations. 

I would like to thank Professor L Turko for reading the manuscript. I also wish to 
thank Drs A Huczynski and A Kozek for providing me with a procedure for generating 
random numbers. 
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Figure 3. The last 3000 particles which hit the aggregate plotted for the aggregates from 
figure 2 ( b )  in the upper part and from figure 2 ( d )  in the lower part. It is seen in the lower 
part that in spite of the large length of step (s = 29) the particles do not penetrate deeply 
into the aggregate. 
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